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Abstract
We consider N-parameter reductions of the Benney moment equations. These
were shown in Gibbons and Tsarev (1996 Phys. Lett. A 211 19, 1999 Phys.
Lett. A 258 263) to correspond to N -parameter families of conformal maps
and to satisfy a particular system of PDE. A specific known example of
this, the (N = 2) elliptic reduction (L Yu and J Gibbons 2000 Inverse
Probl. 16 605) is described. We then consider an analogous reduction for
a genus 2 hyperelliptic curve (N = 3). The mapping function is given by the
inversion of a second kind Abelian integral on the �-divisor. This is found
explicitly following a method given by Enolskii et al (2003 J. Nonlinear Sci.
13 157).

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

1.1. The Benney moment equations

In 1973, Benney considered an approximation for the two-dimensional equations of motion of
an incompressible perfect fluid under a gravitational force [3]. By assuming that the average
wave height was small compared to the wavelength, he obtained the following equations of
motion:

ut + uux −
∫ y

0
ux(x, y ′, t) dy ′uy + hx = 0 (1)

ht + uhx +
∫ h

0
ux(x, y ′, t) dy ′uy = 0 (2)
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where gravity is taken as unity, u(x, y, t) is the horizontal velocity and h(x, t) is the height of
the free surface. He then showed that if moments are defined by

An(x, t) =
∫ h

0
un dy

they satisfy an infinite set of equations

∂An

∂t
+

∂An+1

∂x
+ nAn−1

∂A0

∂x
= 0 (n = 1, 2, . . .) (3)

now called the Benney moment equations. This set is an example of a system of hydrodynamic
type; these are defined as equations of the form

ut + Vux = 0

where u is a column vector of variables (u1, u2, . . . , uN) and V is an N by N matrix depending
on u [5]. In the case of Benney’s equations, however, N is infinite.

Identical moment equations can alternatively be derived from a Vlasov equation [8, 16]

∂f

∂t2
+ p

∂f

∂x
− ∂A0

∂x

∂f

∂p
= 0. (4)

Here f = f (x, p, t) is a distribution function and the moments are defined instead by

An =
∫ ∞

−∞
pnf dp.

The equation of motion (4) has the Lie–Poisson structure

∂f

∂t
+

{
f,

δH

δf

}
p,x

= 0 (5)

where {· , ·}p,x is the canonical Poisson bracket. Kupershmidt and Manin showed directly that
the moment equations are Hamiltonian [12, 13]. If we set H = 1

2H2 = 1
2

(
A2 + A2

0

)
, A =

(A0, A1, . . .), then

∂A
∂t

= B
∂H

∂A
(6)

where the matrix operator B is given by

Bn,m = nAn+m−1
∂

∂x
+ m

∂

∂x
· An+m−1.

This is consistent with (5) in the sense that if H is some function of the moments, the moment
equations resulting from (5) and (6) are identical.

Benney showed in [3] that system (3) has infinitely many conserved densities, polynomial
in the An. One of the most direct ways to calculate these is to use generating functions [12].

Let λ(x, p, t), a formal series in p, be the generating function of the moments

λ(x, p, t) = p +
∞∑

n=0

An

pn+1
(7)

and let p(x, λ, t) be the inverse series

p(x, λ, t) = λ −
∞∑

m=0

Hm

λm+1
.
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We note here that if An = ∫ ∞
−∞ pnf dp is substituted into (7), then this can be understood as

the asymptotic series as p → ∞ of the integral

λR = p + P

∫ ∞

−∞

f (x, p′, t)
(p − p′)

dp′ (8)

where P denotes the principal value.
Comparing the first derivatives of λ(x, p, t), we obtain the PDE

∂λ

∂t
+ p

∂λ

∂x
= ∂λ

∂p

(
∂p

∂t
+ p

∂p

∂x
+

∂A0

∂x

)
. (9)

If we now hold p constant, this gives

∂λ

∂t
+ p

∂λ

∂x
− ∂A0

∂x

∂λ

∂p
= 0 (10)

which is a Vlasov equation of the same form as (4). Thus (4) and (10) have the same
characteristics. Any function of λ and f must satisfy the same equation.

Alternatively, if we hold λ constant in (9), then we obtain the conservation equation

∂p

∂t
+

∂

∂x

(
1

2
p2 + A0

)
= 0. (11)

Substituting the formal series of p(x, λ, t) into (11), we see that each Hn is polynomial in
the An and is a conserved density. Any of the Hn could therefore be used as the Hamiltonian
in (5). From this we define the Benney hierarchy to be the family of evolution equations

∂f

∂tn
+

{
f,

1

n

δHn

δf

}
= 0.

We note that λ satisfies an equation analogous to this,

∂λ

∂tn
+

{
λ,

1

n

δHn

δf

}
= 0

and that the Hamiltonians satisfy the relation(
1

n

δHn

δf

)
=

(
λn

n

)
+

where (·)+ denotes the polynomial part of the expansion. It was shown in [13] that these
Hamiltonians Poisson commute.

1.2. Reductions of the moment equations

Suppose that for some point p = p̂i , λ(p̂i) = λ̂i

∂λ

∂p

∣∣∣∣
p=p̂i

= 0

then (9) reduces to

∂λ̂i

∂t
+ p̂i

∂λ̂i

∂x
= 0

where ∂λ̂i

∂t
= ∂λ

∂t

∣∣
p=p̂i

and ∂λ̂i

∂x
= ∂λ

∂x

∣∣
p=p̂i

. We say that λ̂i is a Riemann invariant with
characteristic speed p̂i .
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A hydrodynamic type system with N independent variables cannot in general, for N � 3,
be expressed in terms of the Riemann invariants. If such a system does have N Riemann
invariants, it is called diagonalizable. Tsarev showed in [14] that if a diagonal hydrodynamic-
type system

∂λ̂i

∂t
+ vi(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N) (12)

is semi-Hamiltonian, that is if

∂j

(
∂ivk

vi − vk

)
= ∂i

(
∂jvk

vj − vk

)
i �= j �= k

for i, j, k distinct, where

∂k = ∂

∂λ̂k

then it can be solved by the hodograph transformation. Any Hamiltonian system of
hydrodynamic type is semi-Hamiltonian. Given a second equation of type (12)

∂λ̂i

∂τ
+ wi(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N) (13)

and requiring it to be consistent with (12), we find that the wi(λ̂) satisfy the over-determined
linear system

∂kwi

wi − wk

= ∂kvi

vi − vk

i �= k. (14)

These equations are consistent provided (12) is semi-Hamiltonian. If the condition (14) holds,
we say that (12) and (13) commute. In this case a set of equations for the unknowns λ̂i(x, t)

is given by

wi(λ̂) = vi(λ̂)t + x (i = 1, 2, . . . , N)

where t and x are the independent variables. Thus any reduction of this type can be solved in
principle.

This generalized hodograph construction cannot easily be applied directly to the Benney
equations, as these have infinitely many dependent variables. However, we will now consider
families of distribution functions f , which are parametrized by finitely many N Riemann
invariants λ̂i(x, t). We are interested in the case [9, 10] where the function λ(p, x, t) is such
that only N of the moments are independent. Then there are N characteristic speeds, assumed
real and distinct, and N corresponding Riemann invariants (p̂i , λ̂i), so Benney’s equations
reduce to a diagonal system of hydrodynamic type with finitely many dependent variables λ̂i ,

∂λ̂i

∂t
+ p̂i(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N). (15)

Such a system is called a reduction of Benney’s equations.
Zakharov found one such reduction by dividing the fluid flow into K horizontal layers

each with y-independent horizontal velocity ui and depth hi [16]. The system (2) is therefore
reduced to the set of 2K equations

hit + (uihi)x = 0 uit + uiuix +
N∑

i=1

hix = 0 (i = 1, 2, . . . , K)

with moments

An =
K∑

i=0

hiu
n
i .
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p̂1

p1 p2

Figure 1. The p-plane.

λ1
0

λ̂1 = λ(p̂1)

λ(p1) λ(p2)

γ1 Γ+

Figure 2. The λ-plane.

This is clearly a system of hydrodynamic type dependent on 2K variables. Here, the generating
function λ is given by

λ = p +
K∑

i=1

hi

p − ui

.

The construction of a more general family of solutions for equations of this type was
outlined in [9] and [10]. Instead of considering the principal value integral (7), we now define
a new function λ+(x, p, t),

λ+(x, p, t) = p +
∫

�

f (x, p′, t)
p − p′ dp′ (16)

where � is an indented contour passing below the point p. This has the same asymptotics as
λ(x, p, t), provided all the moments An exist, and it can be analytically continued into the
upper half of the p-plane. If f satisfies a Hölder condition on the real p-axis [11], that is if
∃ µ, γ > 0 such that

|f (x, p, t) − f (x, q, t)| � µ |p − q|γ

for q, Im(q) > 0, sufficiently close to p ∈ R, then the boundary value of λ+ satisfies

λ+ = λR − iπf

on R.

An elementary example is the case where the map λ+ takes the upper half p-plane to the
upper half λ-plane with a vertical slit as shown in figures 1 and 2.

This is a Schwarz–Christoffel map

λ+(x, p, t) = p +
∫ p

∞

p′ − p̂1√
(p′ − p1)(p′ − p2)

dp′.

If the residue at infinity is set to be zero, then this imposes the condition p̂1 = 1
2 (p1 + p2) and

we get solution

λ+(x, p, t) = p̂1 +
√

p2 − (p1 + p2)p + p1p2

= p̂1 +
√

(p − p̂1)2 + 2A0
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λ1
0

×
λ̂1 γ1

c̃

Γ+

Figure 3. The slit γ1 on the Jordan arc c = γ1 ∪ c̃.

(from the expansion as p → ∞). This gives a time independent solution of Benney’s
equations (5)

∂f

∂t
+

{
f,

1

2
p2 + A0

}
p,x

= 0.

The two parameters p1 and p2 are not independent, as for consistency their sum must be a
constant. Hence only the end point of the slit in the λ-plane is variable. This is the Riemann
invariant.

The above construction may be generalized. Suppose the relation f = F(λR) holds in
some region of the (x, p)-plane at some time t. Then since both (4) and (10) have the same
characteristics, the relation will be preserved by the dynamics. In this case the definition for
λ+ (16) becomes a nonlinear singular integral equation,

λ+(x, p, t) = p +
∫

�

F(λR(x, p′, t))
p − p′ dp′. (17)

The solutions to (17) can be described in terms of a conformal mapping of a slit domain. We
take the upper half λ-plane, 	+, and draw a Jordan arc c in 	+ starting from a point, λ1

0, on
the real axis (see figure 3). We then fix an arbitrary point on this arc, λ̂1, and make a slit γ1

running along the arc from λ1
0 to λ̂1.

Note that the slit γ1 is given by the relation

Im(λ+) = −πF(Re(λ+))

and so F must be continuous with F � 0. The function p(λ+, λ̂1) is then determined uniquely
by the following properties.

(i) p(λ+, λ̂1) has a branch point at λ̂1, that is

p ∼ p̂ + c(λ − λ̂1)
1
2 + O(λ − λ̂1).

(ii) p(λ+, λ̂1) is real on the real λ+-axis and on both sides of γ1.
(iii) p(λ+, λ̂1) is analytic in the cut half plane 	+.

(iv) As |λ| → ∞, with Im(λ+) � 0, p(λ+, λ̂1) has the expansion

p(λ+, λ̂1) ∼ λ+ + O

(
1

λ+

)
.

The evolution of p is then given by (11); expanding near λ̂1 gives,

∂λ̂1

∂t
+ p̂

∂λ̂1

∂x
= 0.

Thus λ̂1 is the Riemann invariant with characteristic speed p̂ = p(λ̂1).
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λ1
0

×
λ̂1 γ1

c̃1 ×λ̂2

γ2

c̃2

λ2
0

×
λ̂NγN

c̃N

λN
0

Γ+

Figure 4. N slits on 	+. The slit γi is on the Jordan arc ci = γi ∪ c̃i .

It is possible to generalize this construction further to N non-intersecting slits. Here, each
of the slits γi is made along a fixed path starting on the real λ+-axis and ending in a branch
point λ̂i (see figure 4).

Again, λ̂i are the Riemann invariants of the system with associated characteristic speeds
p(λ̂i) and the slits γi are given by

Im(λ+) = −πFi(Re(λ+))

where Fi � 0 are continuous functions.

2. Elliptic reduction

A specific example of a reduction of the Benney moment equations, the elliptic reduction, was
considered by Yu and Gibbons in [15].

The upper half p-plane is mapped into a polygonal domain in the upper half λ-plane.
Consequently, λ(p) : 	1 → 	2 is again of the Schwarz–Christoffel type,

λ(p) = p +
∫ p

−∞
[ϕ(p′) − 1] dp′ (18)

where ϕ(p) is given by

ϕ(p) =
∏2

i=1(p − p̂i)√∏4
i=1(p − pi)

= p2 − αp − β√∏4
i=1(p − pi)

.

The two regions in figures 5 and 6 are defined as follows. 	1 is the upper half complex p-plane
with six points marked on the real axis, p1 < p̂1 < p2 < p3 < p̂2 < p4, and 	2 is the upper
half λ-plane with two vertical slits γi running from a fixed point λ0

i on the real axis to λ̂0
i ,

which is variable. By imposing the conditions

λ(p1) = λ(p2) = λ0
1 λ(p3) = λ(p4) = λ0

2 (19)

where λ0
1 and λ0

2 are prescribed real constants, we obtain the required mapping (figure 6). We
note here that, if we define b to be a closed loop encircling the interval [p1, p2] in the positive
sense (see figure 7), then a consequence of (19) is∫

b

ϕ(p) dp = 0. (20)
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p1

p̂1

p2 p3

p̂2

p4

Γ1

Figure 5. The p-plane for the elliptic reduction.

λ0
1 λ0

2

λ̂1 = λ(p̂1)

λ̂2 = λ(p̂2)

λ(p1) λ(p2) λ(p3) λ(p4)

γ1

γ2

Γ2

Figure 6. The λ-plane for the elliptic reduction.

� �b
a

p1 p2 p3 p4

Γ1

Figure 7. The cycles on the Riemann surface R1. The b-cycle is a closed loop on the first sheet,
and the a-cycle is completed on the second sheet (broken line).

Another of the four conditions in (19) was then replaced by setting the residue of λ(p) at
infinity to be zero, that is

α = 1

2

4∑
i=1

pi

and thus ϕ(p) dp is a second kind Abelian differential on the elliptic Riemann surface

R1 =
{

(v, p) ∈ C
2 : v2 =

4∏
i=1

(p − pi)

}
.

That is ϕ(p) dp is a meromorphic 1-form on R1 with zero residue at each singular point. We
see that the function λ(p) depends on two parameters, Im(λ̂1) and Im(λ̂2) say.

The integral (18) was evaluated by first substituting

p = p4 − 1

℘(χ) − ℘(χ0)

into ϕ(p) and then expanding the integrand near its singularities. Here, ℘ is the Weierstrass
elliptic function with half-periods ω1, ω2 given by

ω1 = 1

2

∫
b

1√∏4
i=1(p − pi)

dp ω2 = 1

2

∫
a

1√∏4
i=1(p − pi)

dp
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p1

p̂1

p2 p3

p̂2

p4 p5

p̂3

p6

Γ1

Figure 8. The p-plane for the genus 2 hyperelliptic reduction.

λ0
1 λ0

2 λ0
3

λ̂1 = λ(p̂1)

λ̂2 = λ(p̂2)

λ̂3 = λ(p̂3)

λ(p1) λ(p2) λ(p3) λ(p4) λ(p5) λ(p6)

γ1

γ2

γ3

Γ2

Figure 9. The λ-plane associated with figure 8.

where a and b are as in figure 7, and

℘(χ0) = −
3∑

i=1

1

3(p4 − pi)
.

The explicit value of the map λ(p) was shown to be

λ(p) = − 1

℘ ′(χ0)

[
ζ(χ + χ0) + ζ(χ − χ0) + 2

ζ(ω1)

ω1
χ

]
+ λ0

2. (21)

3. Genus 2 hyperelliptic reduction

Conceptually, the simplest extension of the elliptic reduction is to consider the case where
λ(p) : 	1 → 	2 is as given in figures 8 and 9.

Here λ(p) is again in the Schwartz–Christoffel form:

λ(p) = p +
∫ p

−∞
[ϕ(p′) − 1] dp′ (22)

where ϕ is given by

ϕ(p) =
∏3

i=1(p − p̂i)√∏6
i=1(p − pi)

.

This mapping takes the region 	1, the upper half complex p-plane with nine points marked on
the real axis

p1 < p̂1 < p2 < p3 < p̂2 < p4 < p5 < p̂3 < p6

to 	2, the upper half complex λ-plane with three vertical slits going from the fixed points λ0
i

to the variable points λ̂i (i = 1, 2, 3).
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� �

�
�

p1 p2 p3 p4 p5 p6

b1 b2

a1

a2

Figure 10. A homology basis on the genus 2 Riemann surface, R2. The b-cycles are closed loops
on the first sheet, and the a-cycles are completed on the second sheet (broken line).

The conditions imposed in the elliptic case are now extended as follows. We require that
λ(p) = p + O

(
1
p

)
as p → ∞ and that

λ(p2n−1) = λ(p2n) = λ0
n (n = 1, 2, 3) (23)

where λ0
n are the prescribed real constants. This means that λ(p) is a function of three

independent parameters which may be taken to be Im(λ̂i) (i = 1, 2, 3). We can replace one
of these conditions with the constraint that the residue of λ(p), as p → ∞ on either sheet, is
zero. Rewriting

ϕ(p) = p3 − αp2 − βp − γ√∏6
i=1(p − pi)

we find that the expansion of ϕ(p) near infinity is

1 +

(
1
2

∑6
i=1 pi − α

)
p

+ O

(
1

p2

)
.

The condition on the residue is thus satisfied when

α = 1

2

6∑
i=1

pi

that is

3∑
i=1

p̂i = 1

2

6∑
i=1

pi. (24)

It follows that ϕ(p) dp is the second kind Abelian differential on the Riemann surface R2

defined by

v2 =
6∏

i=1

(p − pi).

This surface can be constructed from two copies of the complex p-plane joined along the
closed intervals [p1, p2], [p3, p4] and [p5, p6]. The homology basis (a1, a2; b1, b2) for the
Riemann surface is given in figure 10.

Note that the cycle ai only intersects bi and that the intersections have cycle index
ai ◦ bj = δij .
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4. Transformation of the integral

The integral we need to evaluate, (22) is

λ(p) = p +
∫ p

−∞

 ∏3
i=1(p

′ − p̂i)√∏6
i=1(p

′ − pi)

− 1

 dp′.

By substituting p = p6 − 1
t

into the integrand (ϕ(p) − 1) dp, we find

(ϕ(p) − 1) dp =
 ∏3

i=1[(p6 − p̂i)t − 1]√∏6
i=1[(p6 − pi)t − 1]

− 1

 dt

t2

=
 (at3 + bt2 + ct − 1)√∏6

i=1[(p6 − pi)t − 1]
− 1

 dt

t2

for some constants a, b, c. If we now take out the constant factor

k =
(

−4∏5
i=1(p6 − pi)

) 1
2

from this integrand, then we obtain a standardized form for the irrational denominator,

ϕ(p) dp = k
at3 + bt2 + ct − 1

s

dt

t2
(25)

where

s2 = (4t5 + µ4t
4 + µ3t

3 + µ2t
2 + µ1t + µ0). (26)

We note here that the constant µ0 is equal to k2. Thus

ϕ(p) dp = k

(
at3 + bt2 + ct − 1

s

)
dt

t2

= k

(
at + b +

c

t
− 1

t2

)
dt

s
.

Here dt/s and (t dt)/s are a basis of the holomorphic Abelian differentials. To evaluate this
integral we require a specialized form of the Jacobi inversion theorem. We will begin, though,
by outlining the setting for the theorem.

5. Abelian integrals

Let R(s, t), be a hyperelliptic curve where s and t satisfy

s2 = 4
5∏

i=1

(t − ti) =
5∑

i=0

µit
i

and µ5 = 4. Following [4], we define a set of holomorphic differentials dui , and the associated
set of second kind differentials dri . In this genus 2 case these are

du1 = 1

s
dt du2 = t

s
dt (27)
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and

dr1 = µ3t + 2µ4t
2 + 12t3

4s
dt dr2 = t2

s
dt

respectively. From the construction of the canonical homology basis (figure 10) and the
fact that the pi are real, it follows that the periods of these two sets of differentials are real
around the b-cycles and imaginary around the a-cycles. We define the four 2 × 2 matrices
ω,ω′, η, η′ by

2ωij =
∮

bj

dui 2ω′
ij =

∮
aj

dui

2ηij = −
∮

bj

dri 2η′
ij = −

∮
aj

dri (i, j = 1, 2).

As a direct consequence of the Riemann bilinear identity (see [2]), these matrices satisfy the
generalized Legendre relation(

ω ω′

η η′

) (
0 −12

12 0

) (
ω ω′

η η′

)T

= − iπ

2

(
0 −12

12 0

)
where 12 is the 2 × 2 identity matrix. These period matrices, which, apart from a scalar factor,
preserve the matrix(

0 −12

12 0

)
are given by elements of the Symplectic group Sp(4) multiplied by the factor (−iπ/2)

1
2 .

Letting 	 = 2ω ⊗ 2ω′ be the lattice generated by the periods of the holomorphic
differentials, we define the Jacobi variety, Jac(R), to be the two-dimensional complex torus
C

2/	 [2]. The Abel map, A : R → Jac(R), is given by u(z)

ui(z) =
∫ z

z0

dui (i = 1, 2) (28)

where the ui(z) are taken modulo 	 and the base point z0 is any fixed point in R. These create
a one-dimensional image of the hyperelliptic curve in the Jacobi variety.

For the inversion theorem we require an extension of this map to a set of points.

Definition 5.1. A divisor D on the Riemann surface R is defined by the finite formal sum

D =
M∑
i

nizi

where ni ∈ Z and zi = (si, ti) ∈ R.

We define the Abel mapping of D into Jac(R) by

A(D) =
M∑
i

ni

∫ zi

z0

du mod 	 (29)

in genus 2 this is

A(D) =
(

M∑
i

ni

∫ zi

z0

du1,

M∑
i

ni

∫ zi

z0

du2

)
. (30)

The lower limit of integration here the point z0, is called the base point of the Abel map.
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5.1. Hyperelliptic functions (genus 2)

Definition 5.2. The theta function in genus 2 is defined by the Fourier series

θ((2ω)−1u;ω,ω′) =
∑

m∈Z
2

exp iπ [mTω−1ω′m + 2mT(2ω)−1u].

This series converges because B = ω−1ω′ has positive definite imaginary part.

Let v be the normalized Abel map, v = (2ω)−1u; then the theta function has the following
properties:

• Even

θ(v;ω,ω′) = θ(−v;ω,ω′)

• Periodic in the real directions (ω)

∀n ∈ Z
2 θ(v + n;ω,ω′) = θ(v;ω,ω′)

• Quasi-periodic in the complex directions (ω′)

∀n ∈ Z
2 θ(v + (ω−1ω′)n;ω,ω′) = exp(−iπnT(ω−1ω′)n − 2iπvTn) θ(v;ω,ω′).

The zero set of the theta function is of particular importance to the inversion theorem.
Let Kz0 be the vector of Riemann constants, with base point z0, given by(

Kz0

)
1 = 1 + B11

2
−

∫
a2

dv2(z)

∫ z

z0

dv1

(
Kz0

)
2 = 1 + B22

2
−

∫
a1

dv1(z)

∫ z

z0

dv2.

For different base points we get

(2ω)Kz = (2ω)Kz0 +
∫ z

z0

du.

It is known that for u = (2ω)Kz the theta function θ((2ω)−1u;ω,ω′) vanishes. The set of
zeros of θ is therefore

� =
{

u ∈ Jac(R) : u =
∫ z

z0

du + 2ωKz0 , z ∈ R

}
.

This set is called the theta divisor; it forms a one-dimensional image of R in the two-dimensional
Jacobi variety, Jac(R).

Definition 5.3. The fundamental Abelian σ -function (genus 2) is defined as

σ(u;ω,ω′) = 1
4
√

D(v)
C exp

(
1

2
uTηω−1u

)
θ((2ω)−1u;ω,ω′)

where

C =
(

π2

det(ω)

) 1
2

and D(v) is the discriminant of the curve

6∏
i=1

(p − pi).
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For a detailed study of the properties of this function see [4]. It is important to note that

• it is an entire function on Jac(R);
• it satisfies the quasi-periodicity properties

σ(u + 2ωn + 2ω′n′;ω,ω′) = exp[2(ηn + η′n′)T(u + ωn + ω′n′)]
× exp[−iπnTn′] σ(u;ω,ω′)

and the modular property

σ(u; ω̃, ω̃′) = σ(u;ω,ω′)

where
ω̃ = ωd + ω′c ω̃′ = ωb + ω′a
η̃ = ηd + η′c η̃′ = ηb + η′a

and (
aT bT

cT dT

)
∈ Sp(4, Z).

The σ -function is thus independent of the choice of a and b cycles provided these satisfy
ai ◦ bj = δij .

• σ(u;ω,ω′) is zero when u ∈ �.

In the following sections we will be concerned with a single Riemann surface, with fixed
period matrices ω,ω′, so we will simplify the notation of σ(u;ω,ω′) to σ(u). However, when
we consider the space and time variation in the original problem, it is important to bear in
mind that we are then considering a 2-parameter family of such surfaces with variable period
matrices.

As a natural extension of the genus 1 case, we define the logarithmic derivatives of
σ(u) by

ζi(u) = ∂

∂ui

[log σ(u)] = σi

σ
(u) (i = 1, 2)

and

℘ij (u) = − ∂2

∂ui∂uj

[log σ(u)] = −σij

σ
(u) +

σiσj

σ 2
(u) (i, j = 1, 2)

where

σi = ∂σ

∂ui

σij = ∂2σ

∂uj∂ui

. . . .

The higher order logarithmic derivatives are expressed similarly, for example,

℘ijk(u) = − ∂3

∂ui∂uj∂uk

[log σ(u)] (i, j, k = 1, 2).

It is well known that Weierstrass’ ℘-function satisfies the ODE

℘ ′ 2(x) = 4℘3(x) − g2℘(x) − g3.

Similarly, the derivatives of the Kleinian ℘-function are related. For genus 2, the corresponding
partial differential equations were established by Baker [1] (quoted in [4]); these are

℘2222 = 6℘2
22 + 1

2µ3 + µ4℘22 + 4℘12

℘2221 = 6℘22℘12 + µ4℘12 − 2℘11

℘2211 = 2℘22℘11 + 4℘2
12 + 1

2µ3℘12

℘2111 = 6℘12℘11 + µ2℘12 − 1
2µ1℘22 − µ0

℘1111 = 6℘2
11 − 3µ0℘22 + µ1℘12 + µ2℘11 − 1

2µ0µ4 + 1
8µ1µ3.

(31)
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Further, the Baker addition formula for genus 2 is given by

σ(u + v)σ (u − v)

σ (u)2σ(v)2
= ℘22(u)℘12(v) − ℘12(u)℘22(v) + ℘11(v) − ℘11(u)

for u, v /∈ � [4].

5.2. Jacobi’s inversion theorem

We can now use the above setting to state the inversion theorem [4].

Theorem 5.1. Let V2 be a hyperelliptic curve of genus 2 defined by

y2 =
6∑

i=0

ρix
i

with branch points pi as in figure 8. Let

ui =
∫ xa

p2

xi−1

y
dx +

∫ xb

p4

xi−1

y
dx

where (ya, xa) �= (−yb, xb).
The Abel preimage of the point u ∈ Jac(V2) is then given by the set {(ya, xa), (yb, xb)} ∈

(V2)
2, where {xa, xb} are the zeros of the polynomial

P(x; u) = x2 − ℘22(u)x − ℘12(u)

and {ya, yb} are given by

yk = −∂P(x; u)

∂ug

∣∣∣∣
x=xk

.

We note that the Jacobi inversion theorem cannot be applied to our problem directly, as
we are concerned with a second kind differential, and a divisor of degree 1, not 2. However,
by restricting the values of u to the theta divisor, which is an image of the curve

s2 = 4
5∏

i=1

(t − ti) (32)

we can use the method given in [6] to invert integrals like

u(z1) =
∫ z1

∞
du u(z1) ∈ �. (33)

Note that the Jacobi inversion formula cannot be used here since if u is a zero of the
θ -function, then it is also a zero of the σ -function, so that the quadratic equation

P(t; u) = t2 − ℘22(u)t − ℘12(u) = 0

is singular and its roots are undefined. This problem is overcome by noting that if ta and tb
are the two solutions of P(t; u) = 0, then

ta = lim
tb→∞

tatb

ta + tb
.



8408 S Baldwin and J Gibbons

Table 1. A list of branch points (pi) and poles (∞±) of λ(p) with the corresponding points in the
t and u variables.

(p) p1 p2 p3 p4 p5 p6 ∞±

(t) t1 t2 t3 t4 t5 ∞ 0±
(u) u1 u2 u3 u4 u5 0 ±u0

We can thus define the inverse of (32) by

z1 = ta = lim
tb→∞

tatb

ta + tb
= lim

σ→0

(
−℘12(u)

℘22(u)

)
= lim

σ→0

(
σσ12 − σ1σ2

σ 2
2 − σσ22

)
= −σ1

σ2
(u)

where u ∈ � since

lim
tb→∞ u = lim

tb→∞

(∫ ta

∞
du +

∫ tb

∞
du

)
=

∫ ta

∞
du.

6. Evaluation of the integral

The integrand (27) can now be transformed using the above substitution. In this case we define

du1 = 1

s
dt (34)

du2 = t

s
dt (35)

where s is as given in (26), and let

ui(t) =
∫ t

∞
dui (i = 1, 2).

Lemma 6.1. Let t = −(σ1/σ2)(u) and let du1, du2 be defined by (34) and (35), respectively.
Then for u ∈ � the integrand ϕ(p) dp given by (25) may be rewritten

ϕ(p) dp = k

[
AT · du − c

(
σ2

σ1
(u) du1

)
−

(
σ 2

2

σ 2
1

(u) du1

)]
(36)

where AT = (b, a).

In section 3 we specified that as p → ∞, on either sheet of the Riemann surface, the
residue of the function ϕ(p) must be zero. It therefore follows that

ψ(u) = σ 2
2

σ 2
1

(u) + c
σ2

σ1
(u) (37)

must have two double poles with zero residue as σ1 → 0 on the divisor. We will now verify
this by calculating the associated Taylor series.

Let ±u0, where u0 = (u0,1, u0,2), denote the poles of ψ(u). The corresponding points in
the t and p variables are given in table 1.
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If we expand the two terms in ψ(u) about u0, then we have

σ 2
2

σ 2
1

(u) = σ 2
2

σ 2
1

(u0 + (u − u0))

= σ 2
2 + 2σ2σ12(u1 − u0,1) + 2σ2σ22(u2 − u0,2) + · · ·

σ 2
11(u1 − u0,1)2 + 2σ11σ12(u1 − u0,1)(u2 − u0,2) + · · ·

and

σ2

σ1
(u) = σ2

σ1
(u0 + (u − u0))

= σ2 + σ12(u1 − u0,1) + σ22(u2 − u0,2) + · · ·
σ11(u1 − u0,1) + σ12(u2 − u0,2) + · · ·

where each of the σ -function derivatives on the RHS is evaluated at u0. Expanding these
further we obtain a Taylor series in (u1 − u0,1) and (u2 − u0,2). This may be simplified to
a series in one variable as follows. From the definition of ui (28) and the fact t = − σ1

σ2
(u),

we have

(ui − u0,i ) =
∫ t

0
dui (i = 1, 2).

Now, as u0 is a regular point on the hyperelliptic curve, we can expand these integrals in terms
of the local parameter t . We thus find that1

(u1 − u0,1) = 1√
µ0

t − 1

4

µ1

µ
3/2
0

t2 + O(t3)

(u2 − u0,2) = 1

2

1√
µ0

t2 − 1

6

µ1

µ
3/2
0

t3 + O(t4)

and so we can write (u2 − u0,2) in terms of (u1 − u0,1) as follows

(u2 − u0,2) = 1
2

√
µ0(u1 − u0,1)

2 + 1
12µ1(u1 − u0,1)

3 + O((u1 − u0,1)
4). (38)

Substituting (38) into the Taylor expansion of ψ(u) we have

ψ(u) = ψ(u0 + (u − u0))

=
(

σ 2
2

σ 2
11

)
1

(u1 − u0,1)2

+

(
2
σ2σ12

σ 2
11

+ c
σ2

σ11
− √

µ0
σ 2

2 σ12

σ 3
11

− σ 2
2 σ111

σ 3
11

)
1

(u1 − u0,1)
+ O(1).

This expression may be simplified further using the relations between the derivatives of
the σ -function on the divisor and at the point u0. These can be calculated by expanding the
five partial differential equations (31) near the divisor �, where σ(u) = 0.

This method and the full set of relations for the third-order derivatives holding on � are
given in appendices A and B.

1 In practice, these series were evaluated to high order using Maple (version 6).
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The case of σ11(u0) is slightly different. For a general point on the divisor the expression
for σ11(u) is as given in (A.7), leading to a sign ambiguity (A.8). This is resolved at u = u0

by evaluating σ11(u0) from the Taylor series of σ(u) about u0. Expanding along the divisor,
we have

0 = σ(u)

= σ(u0 + (u − u0))

= σ2(u2 − u0,2) + 1
2σ11(u1 − u0,1)

2 + · · ·
(since both σ and σ1 are zero)

= (
1
2σ2

√
µ0 + 1

2σ11
)
(u1 − u0,1)

2 + O((u1 − u0,1)
3)

(from (38)).
We therefore have

σ11(u0) = −√
µ0 σ2(u0). (39)

We can now use (B.1) and (39) to evaluate ψ(u),

ψ(u) = ψ(u0 + (u − u0))

=
(

1

µ0

)
1

(u1 − u0,1)2

+

(
−c

1√
µ0

− 1

2

µ1

µ
(3/2)

0

)
1

(u1 − u0,1)
+ O(1)

so for the residue to be zero we require that

c = −1

2

µ1

µ0
. (40)

From equation (25) and identity (24) we have

c =
3∑

i=1

(p6 − p̂i) = 3p6 −
3∑

i=1

p̂i

= 3p6 − 1

2

6∑
i=1

pi = 1

2

5∑
i=1

(p6 − pi)

and from the definitions of µ0 and µ1 in equation (25) we have that

−1

2

µ1

µ0
= −1

2

(
4

5p6 − p5 − p4 − p3 − p2 − p1∏5
i=1(p6 − pi)

)(
−1

4

5∏
i=1

(p6 − pi)

)

= 1

2

5∑
i=1

(p6 − pi).

Thus ψ(u) is of the correct form.
We now consider the function

�(u) = − 1

µ0

σ11

σ1
(u).
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Its derivative along the divisor with respect to u1 is

d

du1
�(u) = ∂

∂u1
�(u) −

(
σ1

σ2
(u)

)
∂

∂u2
�(u)

= − 1

µ0

[
σ111

σ1
− σ 2

11

σ 2
1

−
(

σ1

σ2

) (
σ112

σ1
− σ11σ12

σ 2
1

)]

= 1

µ0

[
σ111

σ1
− σ 2

11

σ 2
1

− σ112

σ2
+

σ11σ12

σ1σ2

]
.

Substituting identities (A.4), (A.5) and (A.7) into this gives

d

du1
�(u) = σ 2

2

σ 2
1

− 1

2

µ1

µ0

σ2

σ1

= ψ(u).

The function �(u) may be written in terms of ζ1-functions using the following addition
formulae.

Theorem 6.1 ([6]). Let u, v ∈ �, then the following addition formula holds

ζ1(u + v) + ζ1(u − v) = 2
σ2(v)σ1(u)σ12(u)

σ2(u)(σ2(u)σ1(v) − σ1(u)σ2(v))
− σ2(v)σ11(u)

σ2(u)σ1(v) − σ1(u)σ2(v)

− σ2(v)σ1(u)2σ22(u)

σ2(u)2(σ2(u)σ1(v) − σ1(u)σ2(v))
+ 2

σ12(u)

σ2(u)
− σ22(u)σ1(u)

σ2(u)2
.

Proof. The partial derivative with respect to u1 of the logarithm of the Baker addition formula
is

LHS = ∂

∂u1

[
ln

(
σ(u + v)σ (u − v)

σ (u)2σ(v)2

)]

= σ1(u + v)

σ (u + v)
+

σ1(u − v)

σ (u − v)
− 2

σ1(u)

σ (u)

= ζ1(u + v) + ζ1(u − v) − 2ζ1(u)

RHS = ∂

∂u1
ln[℘22(u)℘12(v) − ℘12(u)℘22(v) + ℘11(v) − ℘11(u)]

= ℘122(u)℘12(v) − ℘112(u)℘22(v) − ℘111(u)

℘22(u)℘12(v) − ℘12(u)℘22(v) + ℘11(v) − ℘11(u)
.

If we now add 2ζ1(u) to both sides of this equation, we have

ζ1(u + v) + ζ1(u − v) = ℘122(u)℘12(v) − ℘112(u)℘22(v) − ℘111(u)

℘22(u)℘12(v) − ℘12(u)℘22(v) + ℘11(v) − ℘11(u)
+ 2ζ1(u).
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Expanding the RHS for u ∈ �, using the expansions (A.1) and (A.2), and substituting in the
relations (A.3)–(A.7) gives a series in ξ with first term of order 1.2 If we then repeat this for
v ∈ � and let ξ → 0, we obtain the required result. �

Corollary 6.1. Let u, u0 ∈ � and let σ1(u0) = 0, then

(a) ζ1(u + u0) + ζ1(u − u0) = σ11

σ1
(u)

(b) ζ1(u + u0) − ζ1(u − u0) = √
µ0

σ2

σ1
(u) + 2

σ12

σ2
(u0).

Proof. (a) Set v = u0 in addition theorem 6.1 and use the identity σ1(u0) = 0.
(b) Similarly, set u = u0 in theorem 6.1. �

Thus, for u ∈ � we have

�(u) = − 1

µ0

σ11

σ1
(u) = − 1

µ0
[ζ1(u + u0) + ζ1(u − u0)] .

The differential ϕ(p) dp given in lemma 6.1 is therefore expressible as the derivative of known
functions

ϕ(p) dp = k

[
AT · du −

(
d

du1
�(u)

)
du1

]
where

k = ±√
µ0 = ±

(
−4∏5

i=1(p6 − pi)

) 1
2

.

Hence, substituting

p = p6 +
σ2

σ1
(u)

into (22) we have

λ(p) = p +
∫ p

∞
[ϕ(p′) − 1] dp

=
(

p6 +
σ2

σ1
(u)

)
+

∫ 1
p6−p

0

[
kAT · du − k

(
d

du1
�(u)

)
du1 − dt

t2

]
=

(
p6 +

σ2

σ1
(u)

)
+

{
kAT · u +

1

k
[ζ1(u + u0) + ζ1(u − u0)] − σ2

σ1
(u)

}
+ C̃.

The constant C̃ can be found by evaluating both sides at any convenient point. For example,
if we set p = p6 ⇔ u = 0, then

C̃ = λ(p6) − p6 = λ0
3 − p6.

Alternatively, setting p → ∞+ ⇔ u → +u0, we find

λ(p) − p = kAT · u +
1

k
[ζ1(u + u0) + ζ1(u − u0)] − σ2

σ1
(u) + C̃ → 0.

2 The Taylor series were calculated using Maple (version 6).
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Hence

C̃ = −k(AT · u0) − 1

k
ζ1(2u0) − lim

u→u0

[
1

k
ζ1(u − u0) − σ2

σ1
(u)

]
.

Expanding this near u0 we have

−1

k
ζ1(u − u0) +

σ2

σ1
(u0 + (u − u0)) = lim

u1→u0,1

[(
−1

k
(u1 − u0,1)

−1 + O((u1 − u0,1))

)
+

(
− 1√

µ0
(u1 − u0,1)

−1 +

(
1

4

µ1

µ0

)
+ O((u1 − u0,1))

)]
= 1

4

µ1

µ0

(setting k = −√
µ0 ).

It follows that

C̃ = √
µ0 AT · u0 +

1√
µ0

ζ1(2u0) +
1

4

µ1

µ0
.

Hence, analogously to (21), we obtain the following result.

Theorem 6.3. Let

λ(p) = p +
∫ p

∞

∏3
i=1(p

′ − p̂i)√∏6
i=1(p

′ − pi)

dp′

k = −
(

−4∏5
i=1(p6 − pi)

) 1
2

and

AT =
 3∑

i=1

3∏
j>i

(p6 − p̂i)(p6 − p̂j ),

3∏
i=1

(p6 − p̂i)

 .

Then if we set

p = p6 +
σ2

σ1
(u)

with u, u0 ∈ � and σ1(u0) = 0, we have

λ(p) = p6 +
1

k
[ζ1(u + u0) + ζ1(u − u0) − ζ1(2u0)] + kAT · (u − u0) +

1

4

µ1

µ0

on sheet R+
2 of the Riemann surface

R2 =
{

(v, p) ∈ C
2 : v2 =

6∏
i=1

(p − pi)

}

associated with the relation p → ∞+ ⇔ u → u0.
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7. Summary

In the genus 2 case the conformal map from 	1 to 	2, p → λ(p), is described as follows. We
fix three real parameters λ0

n(n = 1, 2, 3) and require that the three variables λ̂n satisfy

Re(λ̂n) = λ0
n.

The mapping λ(p) is then given by the Schwarz–Christoffel integral

λ(p) = p +
∫ p

∞

 ∏3
i=1(p

′ − p̂i)√∏6
i=1(p

′ − pi)

− 1

 dp′.

Here the nine parameters pi (i = 1, 2, . . . , 6), p̂j (j = 1, 2, 3) are fixed by the nine relations∫ p2n−1

∞
[ϕ(p) − 1] dp + p2n−1 = λ0

n (n = 1, 2, 3)∫ p2n

p2n−1

ϕ(p) dp = 0 (n = 1, 2, 3)

and ∫ p̂n

p2n−1

ϕ(p) dp = i Im(λ̂n) (n = 1, 2, 3).

The explicit form of λ(p), depending on the three parameters Im(λ̂n), is given by

λ(p) = p6 +
1

k
[ζ1(u + u0) + ζ1(u − u0) − ζ1(2u0)] + kAT · (u − u0) +

1

4

µ1

µ0

with

p = p6 +
σ2

σ1
(u)

and σ(u) = 0. This is a highly implicit and transcendental expression.
Its asymptotics are given as follows

λ(p) = p +
A0

p
+ O

(
1

p2

)
where

A0 = −1

8

µ2
1

µ2
0

+
1

2

µ2

µ0
+

3∑
i=1

3∏
j>i

(p6 − p̂i)(p6 − p̂j ).

Similar expressions may be found in principle for higher moments An.
If λ(p) is required to satisfy Benney’s equation (10) and to be of this form, then the λ̂n

satisfy

∂λ̂n

∂t
+ p̂n

∂λ̂n

∂x
= 0 (n = 1, 2, 3).
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Further, the p̂n and A0 must satisfy the Gibbons–Tsarev equations [7, 9]:

∂p̂j

∂λ̂i

=
(

∂A0

∂λ̂i

)
1

p̂i − p̂j

∂2A0

∂λ̂i∂λ̂j

= 2

(
∂A0

∂λ̂i

∂A0

∂λ̂j

)
1

(p̂i − p̂j )2
.

It would be interesting to find a more explicit form of this solution.

Appendix A. Differential relations holding on the divisor

The differential relations for derivatives of σ(u), u ∈ �, are evaluated as follows.
For a general point ũ ∈ � we have

(ui − ũi) =
∫ t

∞
dui (i = 1, 2).

Setting t = ξ−2 and expanding the RHS in terms of this local parameter, ξ, we obtain the
series

(u1 − ũ1) = −1

3
ξ 3 +

µ4

40
ξ 5 + O(ξ 7) (A.1)

and

(u2 − ũ2) = −ξ +
µ4

24
ξ 3 + O(ξ 5). (A.2)

If we now, for example, take the first equation (31)

℘2222 − 6℘2
22 − 1

2µ3 − µ4℘22 − 4℘12 = 0

and expand the numerator in terms of (u − ũ), then we get a Taylor series in (u1 − ũ1) and
(u2 − ũ2), equal to zero. Substituting in (A.1) and (A.1) gives an expansion in terms of the
single parameter ξ . The relations between the σ derivatives are then found by equating the
coefficient of each power of ξ with zero. Returning to equation (31), the coefficient of ξ 0 is

8σ2σ222 − 6σ 2
22 − 8σ2σ1 − 2µ4σ

2
2 .

Setting this to zero we find

σ222 = 3

4

σ 2
22

σ2
+ σ1 +

1

4
µ4σ2 (A.3)

for any point on the divisor.
The following relations, calculated in the same way, from other equations (31), are valid

for u ∈ �:

σ111 = −3

4

σ 2
22σ

3
1

σ 4
2

− 3

2

σ22σ1σ11

σ 2
2

+
3

4
µ4

σ 3
1

σ 2
2

− 3
σ 4

1

σ 3
2

− 3

4
µ3

σ 2
1

σ2
− 3

σ1σ
2
12

σ 2
2

+ 3
σ12σ22σ

2
1

σ 3
2

+ 3
σ12σ11

σ2
+ µ2σ1 − 1

2
µ1σ2 (A.4)
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σ112 = 1

4

σ 2
22σ

2
1

σ 3
2

+
1

2

σ22σ11

σ2
− 1

4
µ4

σ 2
1

σ2
+

σ 3
1

σ 2
2

+
1

4
µ3σ1 +

σ 2
12

σ2
− σ22σ1σ12

σ 2
2

(A.5)

σ122 = −1

4

σ 2
22σ1

σ 2
2

− σ 2
1

σ2
+

1

4
σ1µ4 +

σ12σ22

σ2
(A.6)

An expression for the second-order derivative σ11 can also be obtained in this way. From the
fifth PDE (31) we have

0 = σ 2
11 +

(
2
σ22σ

2
1

σ 2
2

− 4
σ1σ12

σ2

)
σ11 +

(
σ 4

1 σ 2
22

σ 4
2

+ 4
σ 5

1

σ 3
2

+ µ3
σ 3

1

σ2
+ 4

σ 2
1 σ 2

12

σ 2
2

− 4
σ12σ22σ

3
1

σ 3
2

− µ4
σ 4

1

σ 2
2

− µ2σ
2
1 + µ1σ2σ1 − µ0σ

2
2

)
(A.7)

and so

σ11 = 2
σ1σ12

σ2
− σ22σ

2
1

σ 2
2

± 1

σ 2
2

(−4σ 5
1 σ2 − µ3σ

3
1 σ 3

2 − µ1σ1σ
5
2 + µ4σ

4
1 σ 2

2 + µ0σ
6
2 + µ2σ

2
1 σ 4

2

) 1
2 .

(A.8)

Appendix B. Differential relations holding at u = u0

At specific points u0, defined by σ1(u0) = 0, the first four identities in appendix A reduce to

σ111(u0) = 3
σ12σ11

σ2
(u0) − 1

2
µ1σ2(u0) (B.1)

σ112(u0) = 1

2

σ22σ11

σ2
(u0) +

σ 2
12

σ2
(u0) (B.2)

σ122(u0) = σ12σ22

σ2
(u0) (B.3)

and

σ222(u0) = 3

4

σ 2
22

σ2
(u0) +

1

4
µ4σ2(u0). (B.4)
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